2019高考【数学文】一轮复习训练营(直播+录播)

本课程支持以下设备缓存听课 分享
价格 780

课时:40    有效期: 365天

主讲:程玲海

课程参数

高考一轮复习的录播课程将于九月中旬起陆续更新上线,预计每周更新一讲。

课程介绍

  • 做题速度慢,答题时间总是不够用?

  • 基础知识掌握不够全面、不够精准?

  • 缺乏数学思维方法,知识结构体系混乱?

学习目标
  • 强化识别题型特征的能力
  • 知识迁移能力的提高
  • 数学思维方法的培养
课程亮点
  • 覆盖所有高考考点
  • 解决解答题计算和逻辑问题
  • 构建完整知识体系
讲师介绍
程玲海
 
10年高考数学教学经验,北京师范大学数学系毕业。教学多年,对高考数学命题规律有很好的把握。知识讲解深入浅出,答题技巧讲究通法通解,学生心中的高智商暖男.
课程大纲
高考一轮复习直播时间排期
课次 主讲内容 课程目标 直播日期 直播时间
第一讲 三角类综合 掌握三角恒等变换类与解三角形类的做题方法与思路,熟练应用各种常见公式 2018.10.6 15:30-17:30
第二讲 数列类综合 能够区分高考中常见题型的特征,掌握常见题型的不同解法与解题思路。并熟练应用各种解题方法 2018.11.3 15:30-17:30
第三讲 立体几何类综合 掌握三视图正确看图方法与画图方法,掌握各种传统法证明题的解题思路,抓住解题关键点 2018.12.8 15:30-17:30
第四讲 圆锥曲线类 能区分各种高考常见类型题,并熟练背诵与应用常见题型解题所需的公式与特殊方法。理解与掌握不同题型的解题思路与解题要点 2018.12.22 15:30-17:30
第五讲 导数类 掌握导数题型的题型分类,能够建立起数形结合的思维模式,针对不同题型,使用不同的解题方法 2019.1.5 15:30-17:30
高考一轮复习录播课程大纲
课次 主讲内容 课程目标
第一次 集合的关系与运算、命题与量词、逻辑联结词、充分条件与必要条件 (1)理解集合之间包含与相等、并集与交集、子集的补集的含义,能识别给定集合的子集,会求两个简单集合的并集与交集、给定子集的补集.(2)能使用韦恩(Venn)图表达集合的关系及运算.(3)理解命题的概念.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的意义;了解逻辑联结词“或”“且”“非”的含义;理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.
第二次 函数的定义域、值域、对应关系以及指数函数、对数函数、幂函数 (1)了解构成函数的要素和映射的概念,会求一些简单函数的定义域和值域;了解(2)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(3)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;理解对数函数的单调性,掌握对数函数图像通过的特殊点;掌握五种幂函数图象及性质. 
第三次 函数的单调性、周期性、奇偶性、对称性 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义;会运用函数图像理解和研究函数的性质.
第四次 三角函数的运算以及图像性质 (1)了解任意角、弧度制的概念,能进行弧度与角度的互化.(2)理解任意角三角函数(正弦、余弦、正切)的定义.(3)掌握三角函数的诱导公式,会画三角函数图象.(4)会计算正弦型和余弦型函数的周期,最大(小)值,能确定单调区间、对称轴、奇偶性、与x轴交点等性质(5)理解同角三角函数的基本关系式
第五次 平面向量的线性运算与坐标运算 (1)掌握向量加法、减法、数乘的运算,并理解其几何意义;理解两个向量共线的含义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条
第六次 正弦定理、余弦定理、三角形面积公式的综合应用 掌握正弦定理、余弦定三角形面积公式,并能解决一些简单的三角形度量问题;能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
第七次 基本不等式与简单的线性规划 (1)了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
第八次 数列的证明、求通项 (1)理解等差数列、等比数列的概念;通项公式与前项和公式;(2)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
第九次 数列求和、数列中的不等式证明 会求数列的和,并能证明数列不等式
第十次 导数的几何意义、切线问题以及导数在小题中的常见考法 (1)理解导数的几何意义;能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
第十一次 导数中的单调性问题、极值最值问题 (1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
第十二次 导数中不等式恒成立能成立问题以及零点问题的综合应用 会计算导数中不等式恒成立能成立问题以及零点问题
第十三次 直线与圆位置关系的综合应用 能判断直线与圆的位置关系并能做相关类型题
第十四次 椭圆、双曲线、抛物线的常规考法 (1)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(2)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(3)了解圆锥曲线的简单应用.(4)理解数形结合的思想.
第十五次 空间几何体的三视图、外接球内切球问题、体积最值类问题 (1)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图;会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(2)了解球、棱柱、棱锥、台的表面积和体积的计算公式.
第十六次 空间几何体中平行、垂直的证明以及体积、高的求法 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;会求二面角.
第十七次 古典概型、几何概型、抽样方法、常见案例分析 (1)理解分类加法计数原理和分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)理解古典概型及其概率计算公式;会计算一些随机事件所含的基本事件数及事件发生的概率;理解几何概型、抽样方法的意义.
第十八次 线性回归、独立性检验 了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;了解回归分析的基本思想、方法及其简单应用. 
第十九次 坐标系与参数方程 (1)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(2)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(3)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
第二十次 不等式证明选讲 (1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明不等式;会利用绝对值的几何意义求解不等式;了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明;能够利用平均值不等式、柯西不等式求一些特定函数的极值.(2)了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.
关注新东方在线高考辅导
ID:koogaokao
回复「福利」领取学习大礼包

试听免费

2019高考一轮复习数学文【程玲海】第2讲

试听

退换课规则

  • 1、退课:购买录播课程后不超过7天允许申请退课。
  • 2、换课:购买录播课程后不超过7天可申请换课,但每个课程只有一次换课机会,且如所调课程有差额需进行补齐。
  • 3、课程升级:需退换课程与被退换课程(课程为在学习未过期状态)为包含关系时,用户需先补足课程间的差价,将课程进行调换,此为升级课程。
    (1)有效期为具体天数型课程,在课程总有效期的50%内,可以申请补差价升级课程。
    (2)有效期为截止日期型课程,在有效期过期前2个月提出申请,可以补差价升级课程。
    (3)课程升级属于一种特殊的退换课形式,根据“退换课只能办理一次规定”,升级后的课程无法再次办理退换。
  • 说明:一个课程只能选择以上三项中的一种进行操作,且不论退课、换课或是课程升级,仅有一次操作机会!
  • 4、如所退换课程包含资料等成本费用需在办理退款时一并扣除。
  • 5、如购课时已经开具纸质发票,退课时需要将纸质发票完好寄回,奖区和密码不得刮开或出现任何的破损,否则将不予办理退课。
  • 6、办理退费时如无法原路退回,需根据客服人员要求提供“身份证正反面复印件、开户行、开户名、账号”等信息,如提供信息不全,将无法办理退费业务。
    注:特殊产品如协议有相关退换课规定以协议为主。
恭喜您,领取成功
领取失败,请重新领取