快速查题-初中数学试题

初中数学知识点

数与代数

空间与图形

筛选结果 共找出4624
已知在△ABC中,∠C=90°,CD⊥AB于D,设BC=a,AC=b,AB=c,CD=h。
求证:(1)c+h>a+b;
(2)以a+b、h、c+h为边的三角形是直角三角形。
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4∠B=45动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动,设运动的时间为t秒。
(1)求BC的长;
(2)当 MNAB 时,求t的值。
(3)试探究:t为何值时,△MNC为等腰三角形。
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边。 (1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称(      )。
(2)如图,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你写出所有以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB的顶点M的坐标;
(3)如图,将△ABC绕顶点B按顺时针方向旋转60,得到△DBE,连结AD、DC,∠DCB=30求证: DC2+BC2=AC2。,即四边形ABCD是勾股四边形。
甲楼在乙楼的南面,它们的高AB=CD=20米 ,该地区冬天的阳光与水平面的夹角为30°。
(1)若两楼相距20米,则甲楼的影子落在乙楼上有多高?
(2)要使甲楼的影子不会落在乙楼上,建筑时,两楼之间的距离至少是多少米?
如图,有一个圆柱,它的高等于16cm,底面半径等干4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是(    )cm 。(π取3)
如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C ,过点C的直线交x轴的负半轴于点D(-9,0)
(1) 求A、C两点的坐标;
(2) 求证:直线CD是⊙M的切线;
(3) 若抛物线y=x2+bx+c经过M、A两点,求此抛物线的解析式;
(4) 连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F。如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=:3,若存在,请求出此时点P的坐标;若不存在,请说明理由。 (本题中的结果均保留根号)
如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是(    )。
如图,在高为2m,坡角为30°的楼梯上铺地毯,地毯的长度至少应计
[     ]
A. 4m
B.6m
C.4m
D.2+2m
如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10 cm,母线OE(OF)长为10 cm。在母线OF上的点A处有一块爆米花残渣,且FA = 2 cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为(     )cm。
如图,△ABC中,∠C=90°,⊙O分别切AB、BC、AC于D、E、 F,若AD=5cm,BD=3cm,试求出△ABC的面积。